
Abstract. The results of various ab initio calculations
are reported for the electronic ground state of the
acetylide anion. An ``Eyring's lake'' in the T-shaped
con®guration is identi®ed with six di�erent methods
(SCF, MP2, CCSD, CCSD-T, CCSD(T), and CEPA±1).
The equilibrium bond lengths of HCCÿ are estimated to
be re(CH)=1.0689(3) AÊ and Re(CC)=1.2464(2) AÊ , and
the ground-state rotational constant is predicted to be
B0 � 41636�20�MHz. The large permanent dipole mo-
ment of l0 � ÿ3:093D should facilitate detection of the
anion by microwave spectroscopy. The band centers are
predicted to be 3211:3 cmÿ1�m1�, 511:1 cmÿ1�m2�, and
1805:0 cmÿ1�m3�. A large transition dipole moment of
0.477 D is calculated for the m2 band. Rovibrational
levels of HCCÿ up to approximately 20 000 cmÿ1 above
equilibrium are calculated with DVR-DGB and FBR
methods on the basis of a previous CEPA±1 potential
energy surface. Di�erent energy patterns are found and
discussed, for which anharmonic and Coriolis resonanc-
es are shown to play an important role.
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1 Introduction

Although the acetylide anion, HCC), is one of the
fundamental organic anions and a rather abundant
species in hydrocarbon ¯ames (see, e.g., Ref. [1]), very
little spectroscopic information exists for the free anion
in the gaseous phase. In particular, a high-resolution
study of the anion in any wavelength region is still

missing. In 1987, Gruebele et al. [2] claimed to have
observed 12 lines of the CC stretching rovibrational band
(m3) of HCCÿ by means of diode laser infrared spectros-
copy. On the basis of ab initio calculations within the
coupled electron-pair approximation (CEPA) [3, 4], the
assignments were immediately heavily critized by one of
us [5, 6]. Both the band origin and, even much more
pronounced, the vibration-rotation coupling constant a3
were in intolerable disagreement with the results of the
ab initio calculations. The m3 band origin was calculated
to be 1815:5 cmÿ1 (CEPA±1) and, by transferring a
correction from acetylene, a value of 1807� 5 cmÿ1 was
recommended [6]. This theoretical prediction was exper-
imentally con®rmed by Ervin and Lineberger [7]. They
observed a hot band in the photoelectron spectrum of
HCCÿ which originated from the v3 � 1 vibrational state
and they determined m3 to be 1800� 20 cmÿ1.

The CEPA calculations were extended by Sebald and
Botschwina [8, 9] who constructed a 3D potential energy
function (PEF) capable of describing highly excited vi-
brational states and, for the ®rst time, found a shallow
energy minimum (some sort of an ``Eyring's lake'') in a
T-shaped con®guration of the nuclei. This feature of the
potential energy surface (PES) was found later in less
extensive calculations by Tian et al. [10] and was con-
®rmed through extended coupled-cluster calculations
[11, 12]. In addition, absolute infrared intensities of pure
stretching vibrational transitions were calculated within
a 2D anharmonic approximation [13].

The purpose of the present paper is twofold. Firstly,
we will present the results of new coupled-cluster cal-
culations which should reliably predict the m1 (�CH
stretch) and m2 (bend) band origins with an uncertainty
of about 2 cmÿ1 and the m3 band origin with an uncer-
tainty of about 5 cmÿ1. In addition, we aim to predict the
ground-state rotational constant within an uncertainty
of about 0.05%. The calculated ground-state electric
dipole moment should be accurate to better than 0.01 D
and the calculated vibrational transition moments for
the fundamental bands are expected to have uncertain-
ties of less than 2%.
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Secondly, we make use of the previous, quite accurate
CEPA±1 potential [8, 9] in a detailed investigation of
higher excited rovibrational states, with particular em-
phasis on states lying in the energy regime of the saddle
points to H migration and the T-shaped local energy
minimum. In this region, a transition takes place be-
tween regular vibrational states and rotor-like states,
with an intermediate group of levels in between.

2 A near-equilibrium CCSD(T) PES for HCCÿ
and predictions of spectroscopic properties

The coupled-cluster variant CCSD(T) [14] was employed
in the calculation of a near-equilibrium PEF for HCCÿ
which covers an energy range of about 10 000 cmÿ1
above linear equilibrium. All electrons were correlated in
the CCSD(T) calculations, which were carried out with
the MOLPRO suite of programs [15]. A basis set of 250
contracted Gaussian-type orbitals (CGTOs) was em-
ployed which consists of the s, p, and d part of the
correlation-consistent core plus valence quadruple zeta
(cc-pCVQZ) set of Woon and Dunning [16] for carbon.
It was augmented by the corresponding ``di�use''
functions from the aug-cc-pVQZ set [17] plus the full
sets of f and g functions from the same basis. The full
aug-cc-pVQZ hydrogen basis was used. An analytical
PEF in standard polynomial form was obtained through
a least-squares ®t to 130 calculated energy points which,
after transformation to equilibrium, reads

V ÿ Ve �
X
ijk

CijkDriDRjak �k : even� �1�

Here, Dr and DR denote the changes of the CH and CC
internuclear separations with respect to their equilibrium
values and the angle a measures the deviation from
linearity. The equilibrium bond lengths were calculated
to be re(CH) = 1.0697 AÊ and Re(CC) = 1.2474 AÊ . The

same sort of calculation for isoelectronic HCN yields
re(CH) = 1.0658 AÊ and Re(CC) = 1.1542 AÊ , compared
with the currently best experimental values of 1.06501(8)
and 1.15324(2) AÊ [18]. Assuming the same errors in the
CCSD(T) calculations hold for HCCÿ, we arrive at
re(CH) = 1.0689(3) AÊ and Re(CC) = 1.2464(2) AÊ , with
estimated error bars in parentheses. These values are in
excellent agreement with our previous predictions of
1.0696(5) and 1.2463(10) AÊ [6]. We have also carried out
analogous CCSD(T) calculations for acetylene and
obtained re(CH) = 1.0623 AÊ and Re(CC) = 1.2041 AÊ .
Solely on the basis of experimental data, the equilibrium
structure of HCCH is still not too well-established,
and we therefore favor our previous recommended
structure [CCSD(T) results plus corrections] of
re(CH) = 1.0617(5) AÊ and Re(CC) = 1.2032(2) AÊ [19].
The di�erences between the present CCSD(T) results
and this structure are Dre � 0:0006 AÊ and DRe �
0:0009 AÊ , and are thus very similar to those of HCN.

The PEF coe�cients Cijk for HCCÿ are listed in
Table 1. A plot of the relatively shallow HCC bending
potential is compared with the corresponding potentials
of HCN [20] and HCO� [21] in Fig. 1. In the case of the
latter two species, the complete cc-pCVQZ basis set (198
CGTOs) was employed in the calculations.

An electric dipole moment function was calculated
around the present CCSD(T) equilibrium geometry,
making use of the aug-cc-pVQZ basis and restricting
the correlation treatment to the valence electrons in
CCSD(T) calculations. Dipole moments were calculated
as energy derivatives. The resulting values were trans-
formed locally, that is for each nuclear con®guration, to
the Eckart coordinate system [22]. Parallel and perpen-
dicular components of the dipole moment vector were
then ®tted separately according to

lk ÿ le �
X
ijk

DkijkDriDRjak ; �2�

Table 1. Coe�cients Cijk

(in a.u.) of the CCSD(T)
potential energy function
(PEF) for HCC) a

a See Eq. (1) for de®nition of
PEF terms. Standard deviation
of least-squares ®t: 10)6 Eh

i j k Cijk i j k Cijk

2 0 0 0.1931997 0 0 2 0.0155532
3 0 0 )0.1983988 0 0 4 0.0021789
4 0 0 0.1325729 0 0 6 )0.0011442
5 0 0 )0.0771111 0 0 8 0.0002300
6 0 0 0.0425122 0 0 10 )0.0001028
7 0 0 )0.0205452 0 0 12 0.0000168
8 0 0 0.0055514 1 0 2 )0.0100233
0 2 0 0.4078091 2 0 2 0.0000840
0 3 0 )0.4359179 3 0 2 0.0018319
0 4 0 0.2871242 1 0 4 )0.0006666
0 5 0 )0.1552570 1 0 6 )0.0003195
0 6 0 0.0599375 2 0 4 0.0005178
1 1 0 )0.0116161 3 0 4 )0.0005862
2 1 0 0.0006295 0 1 2 )0.0355042
1 2 0 )0.0032075 0 1 4 0.0078318
2 2 0 )0.0057729 0 2 2 0.0120852
3 1 0 )0.0056214 0 2 4 0.0065616
1 3 0 0.0012072 0 3 2 )0.0043353
4 1 0 0.0030614 1 1 2 0.0014464
3 2 0 0.0054532 2 1 2 0.0033924
2 3 0 0.0040301 1 2 2 )0.0094339
1 4 0 )0.0009229 1 1 4 0.0045837
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which involves only even powers of a, and

l? �
X
ijk

D?ijkDriDRjak ; �3�

in which k is an odd integer value. The coe�cients Dkijk

and D?ijk are listed in Table 2. The present Dkijk
coe�cients referring to stretching vibrational coordi-
nates are very similar to our previous values [13]. Among

the D?ijk coe�cients, the linear term of the angular

dependence is remarkably large. The corresponding
coe�cient for HCN [20] is smaller by a factor of 1.7.

Using the present CCSD(T) PEF (cf. Table 1) and
electric dipole moment function (cf. Table 2), rovibra-
tional term energies, wave functions and line intensities
were calculated variationally. Watson's rovibrational
Hamiltonian [23] was employed together with a basis set
of harmonic oscillator ± rigid rotor wave functions as
®rst suggested and applied by Whitehead and Handy
[24]. These calculations were carried out with a program
written by one of us [8, 25]. They were restricted to low-
lying vibrational states, but rotational excitation up to
J � 25 was included. Results for the vibrational ground
state and the ®rst excited vibrational states are listed in
Table 3. The excited states are well-separated from each
other and undergo no substantial anharmonic interac-
tion with other excited states; therefore conventional ®ts
of the individual rovibrational transitions within one
band are appropriate.

The spectroscopic constants Gv, Beff
v and Deff

v were
obtained from least-squares ®ts to rovibrational energies
with rotational quantum number up to J � 25, with

separate ®ts being carried out in the e and f blocks. The
Gv value for the ®rst excited state of the bending vibra-
tion, (0 11 0), corresponds to the ``rotationless'' situation
with J 0 � 0, for which the spectroscopic term ``band
center'' is employed (see Ref. [26] for a thorough dis-
cussion). Although the HCC bending potential is rather
shallow there is no pronounced anharmonicity e�ect on
the ®rst excited bending vibrational state. The ratio
m2=x2 amounts to 0.985 and is thus even slightly larger
than the experimental value for HCN of 0.980 [27]. The
band center of the m2 band is predicted to be 511:1 cmÿ1.
According to our experience with HCN [20] and related

Fig. 1. Bending potentials for HCCÿ, HCN , and HCO� [CCSD(T)
results, see text]. The bond lengths are kept ®xed at their
equilibrium values

Table 2. CCSD(T) electric dipole moment function for HCC) a

i j k Dkijk i j k D?ijk

0 0 0 )1.26361 0 0 1 0.54292
1 0 0 0.12203 0 0 3 )0.17878
2 0 0 0.16301 0 0 5 0.11622
3 0 0 0.07615 0 0 7 )0.15601
4 0 0 0.03395 0 0 9 0.07540
5 0 0 )0.02498 1 0 1 )0.04741
0 1 0 0.65647 0 1 1 0.40473
0 2 0 )0.07893 1 1 1 0.02365
0 3 0 )0.04631 2 0 1 )0.04126
0 4 0 0.00758 0 2 1 )0.23236
0 0 2 0.40723 2 1 1 )0.20657
0 0 4 0.04201 1 2 1 0.07763
0 0 6 )0.11477 1 0 3 )0.01756
0 0 8 0.06412 0 1 3 )0.21622
1 1 0 0.09251 1 1 3 )0.09893
2 1 0 0.09894 1 0 5 0.02465
1 2 0 0.02758 0 1 5 0.02902
3 1 0 0.04379
1 3 0 )0.05846
2 2 0 )0.02788
1 0 2 )0.02686
0 1 2 )0.13251
1 1 2 )0.04148
2 0 2 )0.05567
0 2 2 )0.07751
1 0 4 )0.00837
0 1 4 )0.00963
1 1 4 0.23202

aAll coe�cients are given in atomic units

Table 3. Spectroscopic properties for the ground state and the ®rst
excited vibrational states of HCC)a

Property (0, 00, 0) (0, 11, 0) (0, 00, 1) (1, 00, 0)

Gv (cm
)1) 0 511.1 1805.0 3211.3

Beff
v (MHz) 41568 41572,

41828b
41261 41272

Deff
v (kHz) 96.3 96.9, 101.6b 96.4 95.6

lv (D) )3.093c 0.477d 0.127d 0.025d

Ae
1 )0.00023 0.00294 )0.00826

aCCSD(T), all electrons correlated (basis: 250 CGTOs). Harmonic
vibrational wavenumbers: x1 � 3355:4 cmÿ1, x2 � 518:7 cmÿ1;
x3 � 1834:8 cmÿ1
bRotational and centrifugal distortion constants for e and f blocks,
respectively
c Permanent dipole moment
dTransition dipole moment
e First Herman-Wallis coe�cient (see text)
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molecules, this value may be in error by about 2 cmÿ1. It
lies well within the error bars of the approximate value
of 505� 20 cmÿ1 deduced from the photoelectron spec-
trum [7]. Likewise, the calculated value of 1805:0 cmÿ1
for the origin of the parallel band m3 agrees with the
experimental value of 1800� 20 cmÿ1 [7]. The origin of
the weak parallel band m1 (�CH stretch) is predicted at
3211:3 cmÿ1, with an accuracy of about 2 cmÿ1.

From the variational calculations, the di�erences
B0;00;0 ÿ B1;00;0 and B0;00;0 ÿ B0;00;1 are obtained to be
296.8 and 307:5MHz, respectively. They may be com-
pared with the vibration-rotation coupling constants a1
and a3 as calculated by conventional second-order per-
turbation theory in normal-coordinate space. These are
293.8 and 304:8MHz and thus smaller than the above
values by only 1%. Likewise, the a2 value ofÿ133:4MHz
compares nicely with the corresponding value of
ÿ131:9MHz obtained from the Beff

v values of Table 3.
The l-type doubling constant q2 is 256:1MHz (varia-
tional) and 247:8MHz (perturbational). The di�erence
B0;00;0 ÿ Be is calculated to be ÿ163:6MHz (variational)
and ÿ165:9MHz (perturbational), respectively. Using
the former value together with the equilibrium rotational
constant Be � 41 800MHz obtained from the present
corrected equilibrium structure we arrive at a B0;00;0

prediction of 41 636�20�MHz, with a somewhat con-
servative error estimate given in parentheses.

The ground-state quartic centrifugal distortion con-
stant is calculated to be 96:3 kHz and should be accurate
to about 1%. It is larger than the corresponding exper-
imental value for isoelectronic HCN [27] by 10%. As for
HCN [27], vibrational excitation by one quantum leads
to only minor changes in the Deff

v values.
The ground-state dipole moment l0 of HCCÿ is cal-

culated to be ÿ3:093D. According to our experience
with similar molecules, this value should be accurate to
better than 0:01D. The di�erence Dl � l0 ÿ le amounts
to 0:119D which is four times larger than the corre-
sponding value for HCN [20]. This rather big di�erence
between HCCÿ and HCN is mainly due to the shallow
bending potential of HCCÿ. Although the ®rst micro-
wave spectrum of a negative molecular ion was recorded
only very recently, the large value of l0 and the high
stability with respect to electron detachment should
make HCCÿ a promising candidate for forthcoming
experimental studies by microwave spectroscopy.

From the rovibrational wave functions and the elec-
tric dipole moment function we have calculated the
corresponding line intensities. Those of the P and R
branches for all three fundamentals are mainly described
by the two parameters lv (rotationless transition mo-
ment) and A1 (®rst Herman-Wallis coe�cient). They
were derived from a ®t to the squared e�ective transition
moments via the formula

leff
v �m�

� �2� �lv�2�1� A1m� � � ��2 �4�
where the quantum number m has the value ÿJ 00 for P -
branch transitions and J 00 � 1 for R-branch transitions.
The values leff

v �m�
� �2

were obtained from the squared
transition moments R2 of rovibrational transitions (see,
for example, [28] for their de®nition) by division with the

appropriate HoÈ nl-London factors through which the
major portion of the m dependence is removed. In
agreement with our previous work [13], the m1 band is
very weak and will thus be di�cult to observe by
IR absorption spectroscopy. In contrast to isoelectronic
HCN, the A1 value for this band is rather large and is
negative. This has the consequence that lines in the P
branch are stronger than the corresponding lines in the R
branch. A stick spectrum of the m1 band at 273 K is given
in Fig. 2, where the individual line intensities are
normalized with respect to the strongest line within the
P branch. The transition moment of the m3 band is
calculated to be larger than that of the m1 band by a factor
of 5.11, very close to our previous value of 4.96 [13]. The
m3 band has a fairly small positive ®rst Herman-Wallis
coe�cient and thus shows the usual relationship between
the intensities of R- and P -branch lines. The perpendic-
ular band m2 has a large transition moment of 0:477D. It
may thus be a suitable candidate for forthcoming
experimental studies by high-resolution IR spectroscopy.
The A1 value for the P and R branches is calculated to be
small. For the Q branch of the m2 band we calculate a very
small Herman-Wallis coe�cient of AQ

2 � ÿ1:12� 10ÿ5
(see Ref. [29] for its de®nition). A stick spectrum of the
whole m2 band at 273K is given in Fig. 3, where the
individual line intensities are normalized with respect to
the strongest line within the Q branch.

Fig. 2. Stick spectrum of the m1 band at 273 K

Fig. 3. Stick spectrum of the m2 band at 273 K
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3 The energy barrier to isomerization

About 50 energy points were calculated in the vicinity of
the barrier to isomerization and the locations of the two
equivalent saddle points and the T-shaped local energy
minimum between them were determined by suitable
numerical techniques. Throughout, the large basis of 250
CGTOs was employed and all electrons were correlated
in the post-Hartree-Fock calculations. Results are given
in Table 4 where the corresponding values for the
absolute linear energy minimum are also included for
comparison. In accordance with our previous work [8, 9,
11, 12], all six methods employed (SCF, MP2, CCSD
[30, 31], CCSD-T [32], CCSD(T), and CEPA±1) yield
an ``Eyring's lake'' in the T-shaped con®guration. The
heights of the two equivalent saddle points with respect
to this local energy minimum, DE�S ÿ T �, di�er signif-
icantly, however. The CCSD-T and CCSD(T) results are
very similar and should be accurate to at least 50 cmÿ1.
MP2 overestimates DE�S ÿ T � by more than a factor of
2. CEPA±1, which is considerably less expensive than
CCSD-T or CCSD(T), does quite a good job and
underestimates this quantity by roughly 100 cmÿ1.

4 Discrete variable representation (DVR)-distributed
Gaussian basis (DGB) and ®nite basis representation
(FBR) calculations with a CEPA±1 PES

Higher excited rovibrational states of HCCÿ were
investigated on the basis of the previous CEPA±1 PEF
[8, 9]. It corresponds to a polynomial expansion

V ÿ V T
e �

X
ijk

CijkSi
1Sj

2Sk
3 �j : even� �5�

in symmetry coordinates S1; S2; S3 referring to the local
T-shaped energy minimum:

S1 � �r1 � r2 ÿ 2re�=
���
2
p

S2 � �r1 ÿ r2�=
���
2
p

S3 � Rÿ Re :

�6�

r1 and r2 are the CH distances and thus in the above
three equations S1 and S2 correspond to the symmetric
and asymmetric CH stretching coordinates; S3 is the CC
stretching coordinate. The ®t was based on 198 di�erent
CEPA±1 energy points up to about 25000 cmÿ1 above
equilibrium and had a standard deviation of 1:7 cmÿ1
(see Table 5 for the coe�cients Cijk).

Table 4. Geometrical parameters and relative energies of stationary points on the potential hypersurface for H migration in HCC)a

Stationary
point

SCFb MP2b CEPA-1b CCSDb CCSD-Tb CCSD(T)b CEPA)1c [8]

L re (CH) 1.0572 1.0675 1.0676 1.0664 1.0696 1.0697 1.0705
Re(CC) 1.2229 1.2486 1.2421 1.2393 1.2470 1.2474 1.2493
Erel 0 0 0 0 0 0 0

T re(H-M)d 1.0859 1.0699 1.0818 1.0792 1.0820 1.0821 1.0873
Re(CC) 1.2593 1.2808 1.2759 1.2736 1.2807 1.2810 1.2845
Erel 7460 8219 7704 7747 7800 7818 7591

S rs(H-M)d 1.1950 1.1971 1.1651 1.1815 1.1808 1.1795 1.1704
Rs(CC) 1.2604 1.2734 1.2754 1.2719 1.2783 1.2788 1.2838
as 19.80 20.42 16.26 18.37 17.91 17.76 16.25
DE(S-T) 445 872 283 423 401 391 271

a Bond lengths in AÊ and relative energies in cmÿ1. The angle as (in degrees) measures the deviation from the T form. L stands for the linear
global minimum, T for the T-shaped con®guration, and S for the saddle point
b Basis 250 CGTOs, all electrons correlated in post-Hartree-Fock calculations
cValence electrons correlated
dDistance between proton and center of the CC unit

Table 5. Coe�cients Cijk (in a.u.) of the CEPA±1 PEF for HCC)a

i j k Cijk i j k Cijk

2 0 0 0.067503 3 0 2 )0.038292
3 0 0 )0.045160 4 0 2 0.007825
4 0 0 0.021063 1 2 1 0.021176
5 0 0 )0.011214 1 4 1 )0.012299
6 0 0 0.005256 2 2 1 )0.011902
7 0 0 )0.001437 2 4 1 0.007718
8 0 0 0.000202 3 2 1 0.008046
0 2 0 0.015695 3 4 1 )0.003962
0 4 0 0.017505 4 2 1 )0.006859
0 6 0 0.006446 4 4 1 0.002016
0 8 0 )0.000091 1 2 2 )0.013389
0 10 0 0.000005 1 2 0 )0.147103
0 0 2 0.357750 2 2 0 0.156595
0 0 3 )0.330587 3 2 0 )0.101873
0 0 4 0.211535 4 2 0 0.056151
0 0 5 )0.169370 5 2 0 )0.022303
0 0 6 0.040982 6 2 0 0.004983
0 2 1 0.031250 7 2 0 )0.000639
0 4 1 )0.002689 1 4 0 )0.035554
0 6 1 0.003870 2 4 0 0.043865
0 8 1 )0.000531 3 4 0 )0.035893
0 2 2 )0.056522 4 4 0 0.015296
0 4 2 0.006872 5 4 0 )0.003333
0 6 2 0.000792 6 4 0 0.000566
1 0 1 )0.032819 1 6 0 )0.011313
2 0 1 0.014293 2 6 0 0.008830
3 0 1 )0.010824 3 6 0 )0.003263
4 0 1 0.007361 4 6 0 0.000859
1 0 2 0.015626 5 6 0 )0.000246
2 0 2 0.053130

a For the geometrical parameters and the relative energy of the local
T-shaped energy minimum see Table 4. See Eq. (5) for de®nition of
coordinates
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As is obvious from Table 4, the previous CEPA±1
PEF reproduces the geometric and energetic positions of
the stationary points quite well in comparison to the
more accurate CCSD(T) results. The band centers of the
fundamentals of HCCÿ are calculated to be 3216:7 cmÿ1
(m1), 509:7 cmÿ1 (m2), and 1814:9 cmÿ1 (m3). They agree
with our previous values [8, 9, 13]; note that the R(0) line
position (at 512:5 cmÿ1) was quoted as ``m12'' in that
work. The CEPA±1 values di�er from the present
CCSD(T) results by only 5:4 cmÿ1 (m1), ÿ1:4 cmÿ1 (m2),
and 9:8 cmÿ1 (m3). The migration of the proton around
the CC subunit on the CEPA±1 PEF is displayed
graphically in Fig. 4. Throughout, the CC distance is
optimized and the minimum energy path (MEP) is in-
dicated by a full line.

In the calculation of rovibrational states we employed
the vibration-rotation Hamiltonian for triatomic mole-
cules in the body-®xed reference frame and Jacobi co-
ordinates R, r and h [33]. Here, R is the CC bond length,
r the distance between the proton and the center of mass
of CC, and h the angle enclosed by the two radial vec-
tors. A discrete variable representation (DVR) for the
angular variable h and a real 2D distributed Gaussian
basis (DGB) for the radial coordinates are used in the
DVR-DGB approach. The interested reader is referred
to an earlier paper [34] for technical details. Initially, we
also carried out calculations using both internal and
Jacobi coordinates with a ®nite basis representation
(FBR) method which is described elsewhere [35] and
which led to numerically identical results.

The level assignments were made by combining an
analysis of dominant zero-order components with in-
spection of expectation values of Jacobi coordinates.
The separability of the �R; r; h� motions is studied by
reexpanding the exact wave functions into adiabatic
subspaces obtained in the adiabatic stretch-bend ap-
proximation. This procedure is easy to implement within
the DVR-DGB scheme because e�ective, adiabatic

bending potentials are readily given by the two-mode
stretching eigenenergies calculated as a function of the
Jacobi angle (i.e., at chosen DVR angles). As proposed
by BacÏ icÂ and Light [36, 37], the adiabatic energies and
corresponding adiabatic eigenvectors can be calculated
by diagonalizing adiabatically rearranged Hamiltonian
matrices. Our adiabatic projection assignment scheme
makes use of a DVR-ray eigenvector basis [34] and is
therefore di�erent from the approach of BacÏ icÂ [37] based
on a DVR-adiabatic-vibrational-eigenstate basis. Our
method also extends to the J 6� 0 situation. In our earlier
studies it proved valuable in understanding the rovi-
brational energy structure of the HN�2 [38] and
HCO�=HOC� [39] systems. For selected J and k, where
k is the quantum number of the projection of the total
angular momentum J on the body-®xed z-axis, the adi-
abatic eigenfunctions jv1vk

2v3i of the well-de®ned quan-
tum numbers v1; v2; k, and v3 are calculated and
subsequently used to obtain the adiabatic expansions of
the exact wave functions. The assignment, whenever
meaningful, is made by identifying the leading coe�cient
in these wave function expansions.

The potential pro®le along the minimum energy path
(MEP) and the ®rst nine adiabatic bending pro®les are
shown in Fig. 5. The barrier heights along the individual
adiabatic pro®les change prominently with �m1; m3� exci-
tation. That of the ground state is 7322 cmÿ1 and thus
lower than the bare potential barrier height by 540 cmÿ1.
Single excitation of the stretching vibrations leads to
further lowering by 77 cmÿ1 for (0, 1) and 935 cmÿ1 for
(1, 0), respectively. This is best understood by examining
the variation of the stretching frequencies along the
MEP (see Fig. 6). The adiabatic CH stretching fre-
quency xadi

1 decreases from 3233 cmÿ1 at linear geometry
to 2280 cmÿ1 at the saddle point and is rather constant
over the region of the T-shaped local minimum. The
adiabatic CC frequency drops from 1821 cmÿ1 at the
linear geometry to its minimum value of 1737 cmÿ1 at
h � 55� and then increases to 1749 cmÿ1 at h � 90�.

In this work assignments based on a 2D oscillator
and on a 2D rotor model are used for the bending
vibration. In the 2D oscillator model, the vibrational
angular momentum l can have v2 � 1 values ÿv2;
ÿv2 � 2; . . . ; v2 ÿ 2; v2 for a given v2. The double-well
symmetry of HCCÿ is indicated by + or ÿ exponents
for levels which are symmetric or antisymmetric with
respect to permutation of the C atoms. The highly

Fig. 4. Migration of the proton around the CC subunit for the
CEPA±1 potential energy function. The rectangular coordinates (in
a.u.) describe the position of the proton in a coordinate system with
origin at the center of the CC bond and abscissa identical to the CC
bond axis. The energy is minimized with respect to the CC distance.
Contour lines are drawn at intervals of 500 cmÿ1 with the ®rst
contour placed 250 cmÿ1 above linear equilibrium. The minimum
energy path (MEP) is designated by a solid line
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excited bending levels can alternatively be assigned ac-
cording to the 2D rotor model in which l can assume
2v2 � 1 values ÿv2;ÿv2 � 1; . . . ; v2 ÿ 1; v2 for a given v2.
In a body-®xed reference frame l � k. To illustrate the
assignment scheme adopted for the bending vibration,
k-block eigenenergies �2�Ek for k � 0; 1; 2 calculated by
neglecting the vibration-rotation interaction (the rota-
tional energy is included) and the exact EJ ;p rovibra-
tional energies calculated for J � 2 in both parities are
shown in Fig. 7. Only the bending progression associ-
ated with the ground state �v1 � 0; v3 � 0� of the
stretches is displayed. The k-block eigenstates clearly
show two di�erent patterns for energies below the

ground-state adiabatic barrier V �0;0�bar (see Fig.5) at
9908 cmÿ1 and above 10 500 cmÿ1, typical for the 2D
oscillator and the 2D rotor model, respectively. The
k-block eigenstates are used as zero-order components in
our analysis of the more complicated structure of the
exact rovibrational levels which is reported in Sect. 4.2.

We studied the vibrational states up to 20 000 cmÿ1
above the linear global minima. As there are 602 J � 0
eigenstates in this energy range, we report here only se-
lected energy levels in order to demonstrate character-

Fig. 5. MEP (lowest curve) and ®rst nine adiabatic pro®les for
HCCÿ as a function of the Jacobi angle h

Fig. 6a,b. Variation of the adi-
abatic stretching wavenumbers
with the Jacobi angle h. a CH
stretching wavenumbers xadi

1 .
b CC stretching wavenumbers
xadi

3

Fig. 7. Comparison of the k-block eigenvalues �2�Ek for k � 0, 1,
and 2, calculated by neglecting the vibration-rotation coupling,
with the exact rovibrational energies E2;p for J � 2. Only pure
bending levels are shown. The dotted lines at 9908 and 10 500 cmÿ1
show the position of the ground-state adiabatic barrier and the
energy where the onset of rotor-like structure takes place
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istic energy patterns and trends in di�erent energy re-
gions.1 In the following, the levels are frequently desig-
nated by their ordinal number nJ ;p for a given total
angular momentum J and parity p.

The primitive 2D Gaussian functions were distributed
at 23 000 cmÿ1 following closely the procedure described
in Ref. [34]. The rovibrational levels of HCCÿ were
calculated employing 75 DVR points and a 2D-ray
energy cuto� at 30 000 cmÿ1.

4.1 Vibrational (J = 0) structure

The bending level energies of HCCÿ for three di�erent
stretching excitations and J � 0 are shown in Fig. 8 as a
function of the v2 level assignment. The levels below and
above the adiabatic barriers V �v1;v3�bar are assigned employ-
ing the 2D oscillator and the 2D rotor model, respec-
tively. All of the former levels are essentially doubly
degenerate. Only states with energies close to V �v1;v3�bar
show noticeable tunneling splitting, as indicated by the
empty circles in Fig. 8. The tunneling pairs shown are (0
140 0), (0 140 1), and (1 120 0). Their energy splittings are
calculated to be 1.69, 1.89, and 1:36 cmÿ1, respectively.

Two groups of vibrational states can clearly be
identi®ed in Fig. 8. In the lower energy regime, the level
energies depend almost linearly on the quantum number
v2 label as in a harmonic oscillator, but they develop the
pattern of a rotor with a quadratic dependence on v2 in
the high-energy regime. The transition between these
two patterns closely coincides with the e�ective barrier
positions. This is in good agreement with previous
studies of triatomic molecules [34, 36, 38, 39], where it

was shown that the onset of delocalization is determined
by the e�ective adiabatic potential. It is worth empha-
sizing that the in¯uence of the bend anharmonicity
cannot be seen on the energy scale of Fig. 8. The dom-
inant anharmonic mixing is of the type Dv2 � �2. It
increases with m2 excitation and is particularly important
in the vicinity of the adiabatic barrier.

In Fig. 9 we show the variation of the expectation

value

���������
hh2i

q
of the Jacobi angle with level energy for

J � 0, where

���������
hh2i

q
is de®ned by���������

hh2i
q

� cosÿ1�
����������������
hcos2 hi

p
� : �7�

The levels with the same bending (and di�erent stretch-
ing) excitation are connected by a line in Fig. 9: the
®rst line displays �v1; v2 � 0; v3� levels, the second
�v1; v2 � 2; v3�, the third �v1; v2 � 4; v3�, etc., with asso-
ciated

������
hh2i
p

values of �10�, 17�, 22�, etc., respectively.
The vast majority of the

������
hh2i
p

values displays rather high
insensitivity to the stretching excitation for v2 � 14, such
that

������
hh2i
p

provides a particularly good guide for
assignments of levels with di�erent m2 excitations. The
irregularities, like those seen for v2 � 8 and 12 at
�10 500 and 12 200 cmÿ1 in Fig. 9, re¯ect an important
mixing of various zero-order components. The adiabatic
projection assignment scheme has shown that mixing of
the components j0 80 2i and j0 120 1i takes place at an
energy of about 10 500 cmÿ1 and mixing of j0 80 3i and
j0 120 2i occurs at about 12 200 cmÿ1. The wave func-
tions of the levels with �v1 � 0; v2 < 14� and
�v2 < 12; v3 � 0� are fully localized in the region of the
absolute linear minima. One should note the presence of
high-lying localized states (asociated even with very
small values of

������
hh2i
p

) in which excitation primarily
resides in the stretching modes. For making quick

Fig. 8. Variation of the level
energy with the v2 level assign-
ment for three �v1; v3� stretching
excitations: (0, 0), (0, 1), and
(1, 0). The dotted lines show the
positions of the corresponding
adiabatic barriers. The tunnel-
ing pairs are given by empty
circles

1 The complete list of calculated energy levels is available upon
request from one of us (mmladen@gwdg.de)
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preliminary quantum number assignments to calculated
states the expectation values of the Jacobi coordinates
were of great assistance for both the DVR- and FBR-
based methods employed in this work. An automatic
assignment scheme based solely on expectation geome-
tries was previously employed by Bowman et al. [40].

The vibrational levels assigned as �0 160;� 0�,
�0 160;� 1�, and �0 160;� 2� exhibit very high

������
hh2i
p

values
of about 70� in Fig. 9. These states lying at 9901 cmÿ1,
11 647:6 cmÿ1, and 13 378:5 cmÿ1 are only a few wave-
numbers below the corresponding adiabatic barriers at
9908 cmÿ1 (V �0;0�bar ), 11 652 cmÿ1 (V �0;1�bar ), and 13 380 cmÿ1
(V �0;2�bar ). In order to quantify localization of a wave
function wa in the region of the T-shaped well, de®ned by
h 2 �75�; 105��, we introduce the integrated wave func-
tion amplitude PT as

PT �
Z105�
75�

dh
Z
jwaj2 dX �8�

where X stands for the two radial coordinates R, r, and
the three Euler angles. The quantity PT has very large
values of 72%, 67%, and 67% for the vibrational levels
�0 160;� 0�, �0 160;� 1�, and �0 160;� 2�, indicating sig-
ni®cant localization of the corresponding wave functions
in the region of the T-shaped local minimum. In Fig. 9,
the third level with v2 � 14 (at 12 299:2 cmÿ1) and the
third level with v2 � 16 (at 12 420:6 cmÿ1) correspond
to the states �1 140;� 0� and �1 160;� 0� with the CH
stretching mode excited by one quantum. Both states are
located above the corresponding adiabatic barrier at
12 205 cmÿ1 (Fig. 8) and exhibit a smaller localization in
the T-shaped well, as seen by the PT values which are
calculated to be only 33% and 23%.

The majority of the states with v2 > 16�, which are
marked by empty circles in Fig. 9, exhibit the expecta-

tion values
������
hh2i
p

clustered around 50�. The correspond-
ing PT values are calculated to be 12±19%, compared
with PT of 17% (=100%/6) for a wave function uni-
formly distributed over the entire angular region. In
Fig. 8, these levels were classi®ed as rotor-like states.
The e�ective rotational constant for free rotor states is
given by

f �R; r� � 1

2lRR2
� 1

2lrr2
; �9�

where lR � mC=2 and lr � 2mH mC=�mH � 2mC� for
HCCÿ; the quantity 2f �R; r� represents the reduced
mass attributed to the Jacobi angle [33]. The expectation
values h f i of the e�ective rotational constant calculated
for the rotor-like states (v2 > 16) are shown in Fig. 10.
Comparison to fadi and fdiff is also given, where fadi and
fdiff are calculated from the energy di�erences between
the adjacent energy levels v2,

Eadi�0; v02; 0� ÿ Eadi�0; �v2 ÿ 1�0; 0� � 2 fadi v2 �10�
E0;0

0;v0
2
;0
ÿ E0;0

0;�v2ÿ1�0;0 � 2 fdiff v2 ; �11�

by assuming the validity of the rotor term formula
v2�v2 � 1� at these energies. The adiabatic energies
Eadi�v1; vk

2; v3� are calculated by neglecting the stretch-
bend coupling (used in Eq. (10)). The exact vibrational
energies EJ ;p

v1;vl
2
;v3

are employed to calculate fdiff in
Eq. (11).

The smooth curve representing fadi as a function of
the level v2 assignment asymptotically approaches a
limiting value of 10:2 cmÿ1 for v2 > 30. The more com-
plicated structures of hf i and fdiff in Fig. 10 are due to
the e�ects of mode mixing occuring in treatments
beyond 1D. For instance, an abrupt increase in hf i or
decrease in fdiff at v2 � 24 in Fig. 10 is the consequence

Fig. 9. Expectation value of the
Jacobi angle h as a function of
level energy. The positions of
the (0, 0), (0, 1), and (1, 0)
adiabatic barriers are indicated
by vertical dotted lines. The
empty circles show the states
with more than 16 quanta in the
bending mode

142



of a resonance interaction which couples the adiabatic
states j0 24� 0i and j1 14� 0i in the following manner:

jn0;0 � 117i � 0:650 j0 240;� 0i ÿ 0:656 j1 140;� 0i
jn0;0 � 121i � 0:535 j0 240;� 0i � 0:668 j1 140;� 0i ;

�12�
using 2D-oscillator notation. These two-component
descriptions provide 85% and 73% of the exact
vibrational levels n0;0 � 117 and 121 lying at
12 216:5 cmÿ1 and 12 299:2 cmÿ1, respectively. A similar
e�ect is also found for the state with v2 � 30 which
exhibits very extensive mixing with �1 240;� 0�. The
states of a resonant pair exhibit extremely similar
expectation geometries.

4.2 Rotation and Coriolis resonances

The rovibrational levels of HCCÿ were calculated for
J � 0; 1; and 2 in both parities and the energy levels up
to the fourth adiabatic barrier V �1;1�bar at 13952 cmÿ1 were
investigated in particular detail. Two groups of rovibra-
tional levels are identi®ed, which can be classi®ed as
groups of k-assignable and of k-nonassignable states.
This division of states was made by calculating the
probability �J ;p�Pk for each exact eigenfunction wa, where

�J ;p�Pk � jhwajJpkij2 ; �13�
which o�ers a measure of the goodness of the k quantum
number. For a given J , the possible k values are k � J .

The projection of the total angular momentum J on
the body-®xed z-axis is assigned a good quantum num-
ber k if there is a single, dominant probability �J ;p�Pk for
a given J and p. This is the case for all energy levels
�v1 vl

2 v3� lying below the corresponding adiabatic bar-

rier V �v1;v3�bar . The expectation geometries of the k-assign-
able states are rather insensitive to rotational excitation.
Furthermore, these levels are not distinctively a�ected
by Coriolis interaction, as seen in Fig. 7 for J � 2 where
E2;p ��2� Ek at energies below 9908 cmÿ1.

Rotational excitation decreases the tunneling splitting
for v1=0, but increases it when v1 � 1. For J � 1, an
energy splitting of 1.45 and 1:80 cmÿ1 is calculated for
�0 140 0� and �0 140 1�, compared with the corre-
sponding J � 0 values of 1.69 and 1:89 cmÿ1. For the
excited CH stretching mode the tunneling splitting of
the �1 120 0� pair is calculated to be 1.36 cmÿ1 for J=0
and 1.81 cmÿ1 for J=1. The ®rst k=1 tunneling pair
�0 151 0� has an energy splitting of 36:7 cmÿ1 in odd
parity and a splitting of 28:8 cmÿ1 in even parity. The
k � 2 tunneling pair �0 142 0� is split by 1:1 cmÿ1, which
is smaller than in the corresponding k � 0 pair.

At energies above 10 500 cmÿ1 the exact rovibrational
levels of HCCÿ in Fig. 7 reveal complicated patterns due
to Coriolis resonance interactions. All levels here are
strongly coupled and an unambiguous k-assignment is
no longer possible due to very prominent mixing, which
results in almost equal probabilities �J ;p�Pk for interacting
k-subspaces. The exact levels involed in Coriolis reso-
nances exhibit similar expectation geometries.

The Hamiltonian term [34] which gives rise to c-axis
Coriolis resonances is proportional to fi�hL̂y

@
@h�

cot h L̂xL̂zg. It leads to particularly strong coupling of
(k; k � 1)-type when the zero-order components in ad-
jacent k-blocks are nearly degenerate. This is the case for
the �2�Ek levels of HCCÿ lying above 10 500 cmÿ1 in
Fig. 7. In order to avoid any ambiguity regarding the
orientation of the body-®xed reference frame, the
rovibrational levels of HCCÿ for J � 1 in odd parity
were calculated by aligning the z-axis either with the
CC bond vector or with the Jacobi vector. These two
situations are formally described by the same kinetic

Fig. 10. E�ective rotational
constants calculated for the ro-
tor-like states (J � 0) and
ground-state stretching vibra-
tions. For additional explana-
tions, see text
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energy operator [41]. The present DVR-DGB ap-
proach has additionally been adapted to the body-®xed
reference frame which follows principal axes of the
moment-of-inertia tensor, for which the rotational con-
tribution is as in Ref. [42]. These three selections for the
quantization of the overall angular momentum led to the
same conclusions concerning the presence of Coriolis
resonances in the rovibrational energy spectra of the
acetylide anion.

Levels of di�erent symmetry are particularly strongly
mixed by the Coriolis interaction [43, 44]. For the pur-
pose of illustration, Fig. 11 shows Coriolis resonances
n1;1 � 197,201 lying at 11805.1 and 11937:7 cmÿ1 for
J � 1 in odd parity. These resonances originate from a
pair of k � 0 and k � 1 levels assigned as �0 220;ÿ 0� and
�0 231;� 0� in the 2D oscillator model or, alternatively,
as �0 230 0� and �0 231 0� in the 2D rotor model. The
k � 0 zero-order component, calculated by neglecting
vibrational-rotation coupling, di�ers form the J � 0
level at 11873:5 cmÿ1 (the state n0;0 � 105 in Fig. 11)
only in the rotational (J � 1) energy. The k � 1 zero-
order component coincides perfectly with the J � 1
(even parity) state n1;0 � 95 at 11 871:4 cmÿ1. The wave
functions for n0;0 � 105 and n1;0 � 95 in Fig. 11 have
di�erent numbers of nodes and di�erent symmetry. The
former wave function has 23 and the latter one 22 nodes
along the bending coordinate. The resonances
n1;1 � 197,201 exhibit no exchange symmetry, as evi-
denced by di�erent number of nodes N1 and N2 in the
two h intervals: �0�; 90�� and �90�; 180��, respectively.
While the wave function of n1;1=197 has N1 and N2 of 11
and 12, for the wave function of n1;1 � 201 the situation
is reversed with N1 and N2 of 12 and 11. Symmetry
breaking as observed in Fig. 11 for n1;1 � 197,201 has

been encountered in all cases where Coriolis coupling
plays an important role. Extensive mixing of the k � 0
and k � 1 subspaces for the pair n1;1 � 197,201 is addi-
tionally evident in the quantity �1;1�Pk, which is 0.5 for
both k � 0 and 1.

A comment should be made regarding the assign-
ments of the states shown in Fig. 11. The level n0;0 � 105
was actually di�cult to assign because this state is
involved in the resonance interaction as follows

jn0;0�104i � 0:643 j0 160;ÿ1i ÿ 0:609 j0 220;ÿ 0i
jn0;0�105i � 0:625 j0 160;ÿ1i � 0:633 j0 220;ÿ 0i �14�

when the 2D oscillator model is applied. In order to
arrive at a more complete understanding of the level
origin (as well as of the barrier region), the following test
was performed. The PEF was modi®ed such that the T-
shaped well is suppressed. This was achieved by setting
the potential energy to the constant value V �R; r; 75o�
over the region h 2 �75o; 105o�. This modi®cation does
not in¯uence the absolute minima at linear geometry or
the barrier height. The interaction suppressed by
this modi®cation appeared to be crucial for coupling
between bending levels corresponding to neighbouring
(0,v3) adiabatic pro®les. The resonance pair in Eq. (14)
was easy to assign on the modi®ed PES, leading to our
suggestion that the level n0;0 � 105 originates from
�0 220;ÿ 0�.

Coriolis-type interaction can prominently a�ect the
mixing of the zero-order components. An example of
this is rotational excitation of the anharmonic reso-
nances n0;0 � 104, 105 from Eq. (14), which is shown
schematically in Fig. 12. An important consequence of
the pronounced o�-diagonal Coriolis (k; k � 1) coupling,

Fig. 11. 2D contour plots of
wave functions integrated over
the Euler angles for the levels
n0;0=105 and n1;0 � 95 that are
involved in Coriolis resonance
n1;1 � 197,201 for J = 1 (odd
parity). The CC distance is ®xed
at its expectation value
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involving only the vibrational level �0 220;ÿ 0� in
Fig. 12, is a weaker mixing of the adiabatic states in
Eq. (14), such that the level �0 160;ÿ 1� is unambiguously
assigned for J 6� 0. The Coriolis resonances are split by
133 and 263 cmÿ1 for J � 1 (odd parity) and 2 (even
parity), respectively. The Coriolis resonances involving
the levels �0 231;� 0� and �0 222;ÿ 0� for J � 2 in odd
parity exhibit a splitting of 134 cmÿ1.

The dashed lines in Fig.12 show the k-block eigen-
energies �J�Ek calculated by switching o� the Coriolis
term in the kinetic energy operator. One should note
that in Fig.12 the relative positions of the �J�Ek states in
di�erent k-blocks coincide with the relative positions of
the exact rovibrational levels calculated by switching on
the Coriolis term. Therefore, inspection of the �J�Ek

levels is very instructive for predicting whether the exact
level is perturbed from ``below'' or from ``above'' and
for making quick preliminary k assignments to exact
rovibrational levels. The presence of strong Coriolis
resonances, like those discussed in this work for HCCÿ,
can be used as a safe criterion for identi®ng rotor-like
states of any triatomic molecule.

5 Conclusions

Coupled-cluster calculations with a large basis set of 250
GTOs were carried out with the aim to predict the
ground-state rotational constant with about 20MHz
accuracy and the wavenumbers of the fundamental
vibrational transitions with an accuracy of a few
reciprocal centimeters. The large ground-state dipole
moment l0 of ÿ3:093 D and the high stability with
respect to electron detachment should make HCCÿ a
promising candidate for forthcoming experimental in-
vestigation by microwave spectroscopy. A large transi-

tion dipole moment of 0.477 D is calculated for the HCC
bending vibration with band center at 511:1 cmÿ1. The
®rst Herman-Wallis coe�cient for the weak m1 band is
fairly large with the consequence that lines in the P
branch are stronger than the corresponding lines of the
R branch.

All methods of electronic structure theory employed
yield a shallow local energy minimum in a T-shaped
con®guration. CCSD(T) and CCSD-T calculations yield
barrier heights for the two equivalent saddle points of
391 and 401 cmÿ1, respectively.

An extensive study has been devoted to the under-
standing of the main vibrational interactions of HCCÿ
on the previous CEPA±1 PEF [8, 9]. The zero-order
character of eigenstates is analyzed employing an adia-
batic projection scheme, which is well-suited for auto-
matic state assignments as well as for understanding the
importance of the mode-mode couplings. Even though
mixing of the HCC bending and the CH stretching
modes dominates the vibrational structure of HCCÿ,
several instances of resonance mixing between states of
di�erent m3 (CC stretch) excitations are found. The ap-
pearance of rotor-like characteristics in the vicinity of an
adiabatic barrier is clearly shown for bending levels with
identical stretching excitation. For HCCÿ, the vibra-
tional levels with v2 > 16� exhibit this rotor-like
behavior related to rotation of the proton around the
CC bond.

Coupling between the rotational and vibrational de-
grees of freedom participates prominently in the overall
molecular behaviour of HCCÿ and leads to complicated
energy patterns with particularly strong Coriolis reso-
nances at energies where the k-block eigenstates display
the onset of the rotor-like structure. Anharmonic reso-
nances are most sensitively dependent on rotational
excitation.

Fig. 12. Rotational excitation of
the anharmonic resonances
n0;0 � 104,105. The dashed lines
represent k-block eigenenergies
�J�Ek calculated by neglecting
the vibration-rotation interac-
tion. The arrow connects the
zero-order component �J�Ek

with the exact rovibrational
level EJ ;p originating from �J�Ek
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